Life Finds a Way

“Broadly speaking, the ability of the park is to control the spread of life forms.  Because the history of evolution is that life escapes all barriers.  Life breaks free.  Life expands to new territories.  Painfully, perhaps even dangerously.  But life finds a way.”

I am among those who have both admired the works of Michael Crichton and been concerned that he has at times been overly alarmist.  I am thinking of his novel Prey, in particular, in which he describes the evolution of predatory swarms of self-replicating homicidal nanobots.  It was an entertaining-enough novel, but unrealistic in its portrayal of the dangers of nanotechnology.  Such is the prerogative of fiction.  I found his book Jurassic Park, from which the above quotation is extracted, to be more measured in its cautions.  Interestingly, Jurassic Park was written in 1990, fully more than a decade before an interesting real-life occurrence of what he was talking about.  In this case, it was not dinosaurs, of course, but corn.

One of the first so-called “plant pesticides” was StarLink corn, which was genetically engineered to incorporate genes from the bacterium Bacillus thuringiensis, which had been known for decades to produce insecticidal toxins.  When the Environmental Protection Agency registered StarLink in 1998, it was with the restriction that it be used as animal feed and in industrial products, and not to be consumed by humans as food.  But, as Michael Crichton pointed out years previously, life finds a way.

In September 2000, a group of environmental and food-safety groups known as Genetically Engineered Food Alert announced that it had discovered StarLink corn in Taco Bell taco shells, prompting the first recall of food derived from a genetically modified organism.  Things quickly escalated, with some 300 kinds of food items ultimately being recalled because of concerns about the presence of StarLink corn.  Corn farmers protested.  Consumers of corn protested.  And the machinery of government was set in motion through the Food and Drug Administration and the Department of Agriculture to cooperate with the producer of StarLink in containing its spread.

The story of StarLink is a cautionary one that highlights the difficulties that can exist in trying to constrain the will of Nature and has relevance for the increasing use of various forms of nanotechnology.  Materials that fall within the very broad umbrella that “nanotechnology” encompasses are now used in more than 1000 household products, ranging from cosmetics to tennis racquets.  Perhaps even more interesting, though, are the more recent uses of nanoparticles in bone-replacing composites and chemotherapy delivery systems.

The amazing potential of these technologies can be readily appreciated just by considering the delivery of chemotherapy to cancer patients.  There are known substances that can effectively kill tumors in many cases, but current delivery systems amount to using them in a way that increases the toxicity in a patient’s entire body — essentially trying to find that line of toxicity that will kill the tumor but not the patient, who becomes incapacitatingly ill with effects that include nausea, hair loss, bleeding, diarrhea, and many others.  The use of nanoparticles to deliver the substances directly to the tumors has the potential of both increasing the effectiveness of the treatment while dramatically reducing the negative impact on the rest of the patient’s body.

This week, I had the privilege of discussing legal aspects of nanotechnology with Dr. Hildegarde Staninger on her broadcast at One Cell One Light Radio.  A copy of the broadcast can be found here.  During our discussion, we touched on the capacity of nanoparticles, by virtue of their extraordinarily small size, to intrude unexpectedly into the environment.  There are known health risks associated with nanoparticles, such as the triggering of autophagic cell death in human lungs caused by polyamidoamine dendrimers, and there are surely unknown health risks as well.  We also discussed government regulation of nanotechnology, specifically how the very breadth of applications for nanotechnology makes that process difficult and how instead efforts have been made to incorporate nanotechnology into the existing regulatory framework.

Interestingly, this week saw one of the first attempts to deviate from that approach.  At the Nanodiagnostics and Nanotherapeutics meeting held at the University of Minnesota, an invited panel discussed draft guidelines developed with the support of the National Institutes of Health to provide for regulatory oversight of medical applications of nanotechnology.  The final recommendations will not be available for some time, and the usual rulemaking procedures for administrative agencies to allow for public comment will need to be completed.  But the draft recommendations provide insight into how a nanotechnology-specific regulatory framework might develop.  Copies of papers by the group published earlier this year can be found here and here (subscriptions required) and the (free) report on the conference recommendations by the journal Nature can be found here.

Briefly, the group appears to be converging on a recommendation for the creation of two additional bodies within the Department of Health and Human Services — an interagency group that consolidates information from other government agencies in evaluating risks and an advisory body that includes expert members of the public.  These strike me as good recommendations, and there is no doubt that the group considering them has weighed the merits and disadvantages of developing an oversight framework specific to the concerns presented by nanotechnology.

As I mentioned to Dr. Staninger during our discussion, it is very much my belief that dialogues that educate the public about the real risks of nanotechnology — not fictional psychopathic nanobot swarms — are needed in developing appropriate and effective regulation.  There are risks to nanotechnology, just as there are with every technology having such enormous benefit, and realistic management of those risks is a part of the process of exploiting them to our benefit.